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University of California, Berkeley
Physics H7A Fall 1998 (Strovink)

SOLUTION TO PROBLEM SET 9
Composed and formatted by E.A. Baltz and M. Strovink; proofed by D. Bacon

1.

(a.) The Taylor series for ln(1 − x) is found as
follows:

f(x) = ln(1− x) =
∞∑

n=0

f (n)(0)
n!

xn

where f (n) denotes the nth derivative of f .

ln(1− x) = −x− 1
2
x2 − 1

3
x3 + · · ·

ln(1− x) = −
∞∑

n=1

xn

n

We do the same for f(x) = 1/(1 + x).

1
1 + x

= 1− x+ x2 − x3 + · · ·
1

1 + x
=

∞∑
n=0

(−1)nxn

(b.) We have two functions c(x) and s(x) related
as follows:

ds

dx
= c

dc

dx
= s

An easy way to approach this problem is to
solve these differential equations simultaneously.
However, as is the case for most “easy” ways to
do things, the mathematics leading up to the so-
lution is somewhat advanced. Instead we will
use the Taylor series to solve it. Expanding
around x = 0,

s(x) = s(0) + c(0)x+
1
2
s(0)x2 + · · ·

c(x) = c(0) + s(0)x+
1
2
c(0)x2 + · · ·

Adding these two equations, we see that

s(x) + c(x) = [s(0) + c(0)]
∞∑

n=0

xn

n!

We recognize the sum as the Taylor series of ex.

s(x) + c(x) = [s(0) + c(0)]ex

2.

(a.) French problem 1-4(b).
The magnitude of a complex number a + ib,
where a and b are real, is just

√
a2 + b2. The

phase angle θ is equal to tan−1(b/a), where the
quadrant is determined by the signs of both a
and b. The first vector (2 + i

√
3) has length

√
7

and phase θ = tan−1(
√
3/2) = 40.9◦. The second

vector (2 − i
√
3)2 is merely the square of the

complex conjugate of the first vector. Therefore
it has length 7 and −2× the phase, or −81.8◦.
(b.) French problem 1-9.
The value of ii is a little odd, but here goes. We
need to know how to find the log of a complex
number:

ln z = ln |z|eiθ = ln |z|+ iθ

There is an ambiguity here, because we can al-
ways add an integer multiple of 2π to θ. Here
we will choose not to do so, but simply take the
value of θ to be between −π and π. Thus we
obtain

ii = ei ln i = ei2π/2 = e−π/2 = 0.2079

This means that paying 20 cents is bargain, but
a very small one.

(c.) Prove (cos θ + i sin θ)n = (cosnθ + i sinnθ).
This is pretty trivial when we remember

(cos θ + i sin θ)n =
(
eiθ

)n
= einθ

= cosnθ + i sinnθ

3. French problem 3-15.
An oscillatory system loses energy according
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to E = E0e
−γt. We define the Q value as

Q ≡ ω0/γ.

(a.) Middle C on a piano is played, and the en-
ergy decreases to half of its initial value in one
second. The frequency is 256 Hz. The angular
frequency is this times 2π, so ω0 =1608.5/sec.
We find γ from

1
2
= (e−γ/2)2 ⇒ γ = 0.693

Lastly , the Q of the oscillator is

Q = 1608.5/0.693 = 2321

(b.) The note one octave above is struck (512
Hz). The decay time is the same, so the Q value
is simply doubled: Q=4642.

(c.) A damped harmonic oscillator has mass
m = 0.1 kg, spring constant k = 0.9 N/m, and a
damping constant b. The energy decays to 1/e
in 4 seconds. This means that

1
e
= e−4γ ⇒ γ = 0.25 sec−1

⇒ b = mγ = 0.025 kg sec−1

The natural frequency ω0 =
√

k/m = 3 Hz. Fi-
nally, the Q of the oscillator is Q = ω0/γ = 12.

4. At t = 0, the bullet collides inelastically with
the block, so only the momentum is conserved.
The final velocity of the block and bullet is given
by

mv0 = (M +m)v ⇒ v =
mv0

M +m

We now have the initial conditions for the os-
cillation. The initial position is x(0) = 0 and
the initial velocity is v(0) = v. The frequency ω
is given as usual by

√
k/mass, but the mass in

question is the total mass of the system:

ω =

√
k

M +m

The solution is given by x(t) = �[A exp(i(ωt +
φ))]. The initial position tells us that cosφ = 0.
This is ambiguous because the cosine is zero in

two places in one oscillation. We want a place
where it is zero and rising, because we know that
x is increasing at the instant of contact. This is

φ = −π/2

The solution is now

x(t) = �[A exp(i(ωt− π/2)])

We differentiate to get the velocity, and evaluate
this at t = 0.

v(0) = v = −Aω sin(−π/2) = Aω ⇒ A =
v

ω

This gives the final result for the amplitude

A =
mv0√

k(M +m)

5. French 4-5.

(a.) A pendulum is forced by moving the point
of support. The coordinate x gives the location
of the pendulum bob, and ξ gives the location
of the point of support. The forces on the pen-
dulum are the damping force, which we must
assume to be proportional to the absolute veloc-
ity of the pendulum, and the force of gravity.
The force of gravity depends on the angle by
which the pendulum is raised. This is propor-
tional to the distance that the pendulum bob is
displaced from the point of support, x− ξ. This
gives the equation of motion

m
d2x

dt2
= −b

dx

dt
− mg

l
(x− ξ)

Using ω2
0 = g/l and γ = b/m, we put this in the

standard form with ξ as a forcing term.

d2x

dt2
+ γ

dx

dt
+ ω2

0x = ω2
0ξ

(b.) The motion of the point of support is given
by ξ(t) = ξ0 cosωt. We use the formula for the
amplitude of forced oscillation, but we note that
in this case, the equation is

d2x

dt2
+ γ

dx

dt
+ ω2

0x = ω2
0ξ0 cosωt



3

The constant ω2
0ξ0 takes the place of the F0/m

we normally see in this type of equation. The
amplitude of the oscillation is thus given by

A(ω) =
ω2

0ξ0√
(ω2

0 − ω2)2 + γ2ω2

At exact resonance, ω = ω0 and the amplitude is

A(ω0) = ξ0
ω0

γ
= Qξ0

Now we want to find Q. We are given that the
forcing amplitude is ξ0 = 1 mm. The length of
the pendulum is l = 1 m, so this gives ω0 = 3.13
sec−1. We know that the amplitude falls off by
a factor of e after 50 swings, or 50 periods. We
know that A = A0 exp(−γt/2) so γt = 2. t is 50
periods, or 100π/Ω, where Ω is the frequency of
free oscillation

Ω =
√

ω2
0 + γ2/4

Then
γt = 2

γ
100π
Ω

= 2

50πγ =
√

ω2
0 + γ2/4

(50π)2γ2 = ω2
0 + γ2/4

Plugging in the numbers, we get γ = 0.0199.
This gives us Q = 157, and A = 15.7 cm.

(c.) We want to find the frequencies where the
amplitude is half of the resonant value. We
merely solve

ω2
0ξ0√

(ω2
0 − ω2)2 + γ2ω2

= ξ0
ω0

2γ

This gives

4ω2
0γ

2 = (ω2
0 − ω2)2 + γ2ω2

Turning this into a quadratic equation for ω2,
we get

0 = ω4 + (γ2 − 2ω2
0)ω

2 + ω4
0 − 4ω2

0γ
2

The solutions to this are

ω2 =
1
2

(
2ω2

0 − γ2 ±
√

γ4 + 12γ2ω2
0

)

Plugging in the numbers, the two frequencies are
ω = 3.147 sec−1 and ω = 3.113 sec−1.

6. French 4-8.

(a.) A mass is under the influence of a viscous
force F = −bv. Let γ = b/m as usual. The
equation of motion is

dv

dt
+ γv = 0

We can easily solve this equation by direct inte-
gration.

v(t) = v0e
−γt

We simply integrate this equation with respect
to t to get the position.

x(t) = C − v0

γ
e−γt

C is the integration constant that will allow us
to fit an initial condition.

(b.) A driving force F = F0 cosωt is turned on.
We want to find the steady state motion. We will
use a complex exponential for the forcing term,
with the understanding that we take the real part
when we’re done. The new equation of motion is

d2x

dt2
+ γ

dx

dt
=

F0

m
eiωt

Assume a solution of the form

x(t) = Aeiωt

where A is a complex number. Plugging this
into the equation of motion, we see that

−ω2A+ iωγA =
F0

m
⇒ A =

F0/m

−ω2 + iωγ

We write the denominator as the product of
a magnitude and a phase. The magnitude is√

ω4 + ω2γ2. The denominator has a nega-
tive real part and a positive imaginary part,
so it is in the second quadrant with phase
π − arctan (γ/ω). Since the numerator is real,
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the phase of A is minus the phase of its de-
nominator, or arctan (γ/ω) − π. According to
the notation of the problem, the phase of the
oscillation is −δ, so we find

δ = π − arctan (γ/ω)

The amplitude of the oscillation is just the mag-
nitude of A, given by

|A| = F0/m√
ω4 + ω2γ2

The general solution to the problem is

x(t) = C − v0

γ
e−γt

− F0/m√
ω4 + ω2γ2

cos(ωt+ tan−1(γ/ω))

At t = 0, we want x = 0. At t = 0, the last term
B in the general solution is

B(0) = − F0/m√
ω4 + ω2γ2

cos(tan−1(γ/ω))

= − F0/m√
ω4 + ω2γ2

ω√
ω2 + γ2

= − F0/m

ω2 + γ2

Thus the condition x(0) = 0 gives us one equa-
tion for C and v0:

C =
v0

γ
+

F0/m

ω2 + γ2

The first time derivative of B, evaluated at t = 0,
is

Ḃ(0) =
F0/m√
ω2 + γ2

sin(tan−1(γ/ω))

=
F0γ/m

ω2 + γ2

Then, requiring the first time derivative of the
general solution to vanish at t = 0, the second
equation for v0 and C is

0 = 0 + v0 +
F0γ/m

ω2 + γ2

v0 = − F0γ/m

ω2 + γ2

Plugging this value of v0 into the first equation,

C = − F0/m

ω2 + γ2
+

F0/m

ω2 + γ2
= 0

Collecting these results, the solution satisfying
both boundary conditions is

x(t) =
F0/m

ω2 + γ2
e−γt

− F0/m√
ω4 + ω2γ2

cos(ωt− tan−1(γ/ω))

7. Middle C is 256 Hz, and C above it is double
that frequency, or 512 Hz. The scale is divided
into 6 whole steps, or 12 half steps. The note
after each half step is a constant multiple f of
the frequency of the previous note. When we
have gone up twelve half steps, the frequency
will have doubled. The constant factor f is thus
given by f12 = 2 or f = 21/12.

(a.) The frequencies in the scale are thus
C=256, D=287.4, E=322.5, F=341.7, G=383.6,
A=430.5, B=483.3, C=512 Hz. These are zero,
two, four, five, seven, nine, eleven, and twelve
half steps above middle C, respectively.

(b.) Middle C’s third harmonic is three times its
fundamental frequency, or 768 Hz. The second
harmonic of G is 767.133 Hz. The beat frequency
is always just the difference between the two fre-
quencies. In this case the beat frequency is 0.867
Hz, which is easily audible to the piano tuner.

8. An undriven oscillator that is underdamped
has a Q of 100. We want to know how many os-
cillations it takes to damp by a factor of eπ. This
just means that γt/2 = π. Now we want to write
t in terms of the number of oscillations n. This
takes n times the period, or t = 2πn/ω0. This
gives γn/ω0 = 1. Remember that Q = ω0/γ, so
n = Q = 100.


